Synthese von (2,3-Epoxy-4-oxoalkyl)phosphonsäureestern aus (1-Formylalkyl)phosphonaten

Elisabeth Öhler, Heun-Soo Kang und Erich Zbiral*

Institut für Organische Chemie der Universität Wien, Währingerstraße 38, A-1090 Wien

Eingegangen am 3. August 1987

Ausgehend von den (1-Formylalkyl)phosphonsäureestern 1 können die bisher unbekannten *trans*-(2,3-Epoxy-4-oxoalkyl)phosphonate 5 auf zwei Wegen hergestellt werden: Verbindungen des Typs 5b-e und 5k mit $\mathbb{R}^1 = \mathbb{R}^{\frac{1}{2}} = H$ oder Me und $\mathbb{R}^3 = Alkyl$ sind in sehr guten Ausbeuten durch Wittig-Reaktion mit (2-Oxoalkyliden)triphenylphosphoranen 2 und Epoxidierung der resultierenden [(E)-4-Oxo-2-alkenyl]phosphonate 3 zu erhalten; Verbindungen wie $3h - j (\mathbb{R}^1 = Alkyl, Aryl, \mathbb{R}^2 = H)$ isomerisieren beim Olefinierungsschritt teilweise zu den 1-Alkenylphosphonaten 4, Aroyl-Derivate wie $3f (\mathbb{R}^3 = Ph)$ dimerisieren unter Baseneinfluß sehr leicht zu 6. Epoxide mit diesen Substituenten (z.B. 5h, f) können ebenso wie auch die nach dem ersten Weg zugänglichen Vertreter durch Umsetzung von 1 mit den Sn(II)-Enolaten von α -Bromketonen 7 und Cyclisierung der resultierenden Bromhydrine 8 erhalten werden.

Seit der Entdeckung des Antibiotikums Fosfomycin, (--)-[(1R,2S)-1,2-Epoxypropyl]phosphonsäure¹, sind zahlreiche (Epoxyalkyl)phosphonate hergestellt und in erster Linie auf ihre biologische Wirksamkeit untersucht worden^{2,3)}. In jüngster Zeit konnte jedoch auch das Synthese-Potential von (1,2-Epoxyalkyl)- und (2,3-Epoxyalkyl)phosphonsäureestern - vor allem im Hinblick auf den Zugang zu Phosphorfreien Verbindungen - gezeigt werden: So wurden etwa (2,3-Epoxyalkyl)phosphonate durch regioselektive Öffnung mit Nucleophilen in Derivate mit einer Hydroxygruppe in β-Stellung zum Phosphor umgewandelt⁴⁾ und deren Eignung zur Synthese von Olefinen aufgezeigt⁵⁾. Wir haben erst kürzlich über einen neuen, sehr variablen Weg zur Synthese verschiedenster heterocyclischer Carbonylverbindungen berichtet, bei dem (1,2-Epoxy-3-oxoalkyl)phosphonsäureester unter Ausnutzung ihrer latenten α-Hydroxygruppe zu regioselektiven Cyclisierungsreaktionen herangezogen werden^{3.6)}. Im Anschluß an diese Untersuchungen wollten wir auch die Reaktivität der bisher unbekannten homologen (2,3-Epoxy-4-oxoalkyl)phosphonsäureester 5 kennenlernen. Im folgenden werden zwei einander ergänzende, in Schema 1 und 3 zusammengefaßte Wege zu 5 aus (1-Formylalkyl)phosphonaten 1 vorgestellt, bei denen einerseits (2-Oxoalkyliden)triphenylphosphorane und andererseits die Sn(II)-Enolate von α -Bromketonen zur C(2)--C(3)-Verknüpfung verwendet werden.

Synthesis of Dialkyl (2,3-Epoxy-4-oxoalkyl)phosphonates from (1-Formylalkyl)phosphonates

Starting with dialkyl (1-formylalkyl)phosphonates 1; the formerly unknown trans-(2,3-epoxy-4-oxoalkyl)phosphonates 5 are obtained on two ways: Compounds with $R^1 = R^2 = H$ or Me and $R^3 = alkyl$ (5b-e and 5k) are prepared in very good yields by Wittig reaction with (2-oxoalkylidene)triphenylphosphoranes 2 and subsequent epoxidation of the resulting (E)-4-oxo-2-alkenyl derivatives 3. During the olefination step, compounds 3 with $R^1 = alkyl$ or aryl and $R^2 = H$ (3h-j) isomerize extensively to the corresponding 1-alkenyl derivatives 4. Aroyl compounds like 3f ($R^3 = Ph$) readily afford the α,β -dimers 6 on treatment with bases. The epoxides with these substituents (f.e. 5h and 5f) as well as the formerly mentioned oxiranes can be prepared by aldol reaction of 1 with the Sn(II) enolates of α -bromoketones 7 and subsequent cyclisation of the resulting bromohydrines 8.

Darstellung der [(E)-4-Oxo-2-alkenyl]phosphonsäureester 3 durch Umsetzung von (1-Formylalkyl)phosphonaten 1 mit (2-Oxoalkyliden)triphenylphosphoranen 2

Für eine dem Aufbau der (1,2-Epoxy-3-oxoalkyl)phosphonate³⁾ analoge Darstellung der Titelverbindungen 5 durch Epoxidierung der entsprechenden Alkenylverbindungen 3 benötigten wir einen möglichst einfachen und allgemein anwendbaren Weg zu diesen.

Von den Verbindungen des Typs 3 waren bisher mit einer Ausnahme⁷) nur die γ -(Dialkoxyphosphinyl)crotonsäureester 3 (R³ = Alkyl) bekannt. Diese sind leicht durch Arbusow-Reaktion der entsprechenden Bromester mit Trialkylphosphiten⁸) zu erhalten und wurden vor allem bei Naturstoffsynthesen vielfach zu Olefinierungsreaktionen herangezogen^{8,9}. Eine Synthese von Derivaten 3 mit R³ = Alkyl und Aryl durch Arbusow-Reaktion schien nach den Ergebnissen anderer Autoren¹⁰ wenig aussichtsreich. Auch Versuche zum Aufbau von 3 durch Deprotonierung/ γ -Acylierung von Allylphosphonsäureestern lieferten nur unbefriedigende Ergebnisse^{11,12}.

Hingegen sind (E)-Alkenylphosphonate 3 mit $R^1 = R^2 =$ H und $R^1 = R^2 =$ Alkyl – wie aus Tab. 1 und Schema 1 zu entnehmen ist – einfach, mit hoher Stereoselektivität und in sehr guten Ausbeuten durch Wittig-Reaktion der leicht zugänglichen¹³⁾ und vielseitig verwendbaren^{13b,14)} (1-Formylalkyl)phosphonsäureester **1a** ($R^1 = R^2 = H$) und **1d**

<u>3/4</u>	Ausb.(%)	1-H	2-н	3-н	² _J _{P,1}	³ J _{1,2}	4 _{31,3}	³ J ₂ ,	P ³ J _{2,3}	⁴ J _{3,P}
<u>3a</u>	29	2.91 ddd	6.82 ^{a)}	6.24 ddd	23.3	7.8	1	7.8	15.6	4.4
<u>3b</u>	89	2.78 ddd	6.74 ^{a)}	6.28 dd	23.5	7.9	1	7.9	15.8	4.8
30	92	2.76 ddd	6.74 ^{a)}	6.24 dd	23.2	7.8	1	7.8	15.6	4.8
<u>3d</u>	89	2.78 ddd	6.78 ^{a)}	6.32 dd	23.7	7.9	1	7.9	15.8	5.0
3e	89	2.79 dd	6.83 ^{a)}	6.67 dd	23.3	7.9	-	7.9	15.8	4.5
3f	92	2.89 dd	6.95 ^{a)}	7.07 dd	24.3	7.7	-	7.7	15.4	3.7
3g	91	2.76 ddd	6.89 ^{a)}	5.98 dd	23.6	7.9	-	7.9	15.8	5.0
3h	_b)	2.85 dquint	6.82 ddd	6.17 ddd	25.0	7.1	1	7.1	16.0	4.9
<u>3i</u>	_c)	2.9 m	6.87 dt	6.27 ddd		7.4	:	7.4	15.8	5.3
3 j	_d)	4.00 dd	7.05 dt	6.20 dd	25.0	7.8	-	7.8	15.7	3.9
<u>3k</u>	77		6.90 dd	6.13 dd			-	6.0	16.0	4.8
4h	_p)		6.71 dtg	3.33 dd			-	23.0	7.1	3.6
<u>4i</u>	_c)		6.71 dtg	3.38 dd			-	23.2	6.8	3.4
<u>4j</u>	_d)		6.99 dt	3.23			-	22.2	7.4	4.0

Tab. 1. Ausbeuten und ¹H-NMR-Daten der [(E)-4-Oxo-2-alkenyl]phosphonate 3 und der isomeren 1-Alkenylphosphonate 4 [250 MHz, CDCl₁, TMS, δ-Werte, J (Hz)]

^{a)} 2-H-Signal zu einem Sextett vereinfacht ($2J_{2,1} \approx 2J_{2,P} \approx J_{2,3}$). - ^{b)} 73% 3h + 4h (3h: 4h = 3:4). - ^{c)} 72% 3i + 4i (3i: 4i = 65: 35). - ^{d)} 74% 3j + 4j (3j: 4j = 1: 3).

 $(\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{M}\mathbf{e})$ mit (2-Oxoalkyliden)triphenylphosphoranen **2** zu erhalten.

Struktur und E-Konfiguration der Olefinierungsprodukte. 3 ergeben sich aus den in Tab. 1 zusammengefaßten ¹H-

Tab. 2. ¹³C-NMR-Daten der isomeren (4-Oxoalkenyl)phosphonsäureester 3 und 4 [250 MHz, CDCl₃, TMS, δ-Werte, J (Hz)]

_							
3	C-1	¹ J _{P,C}	C-2	² J ₂ ,c	C-3	³ _{ЈР,С}	со
요 <u>눈 -</u> 다	30.98 35.81 35.83 48.92	138.5 138.4 138.4 136.3	136.42 143.24 142.10 141.64	2 11.1 9.3 9.4 8.8	135.1 132.4 129.8 133.5	7 13.4 9 12.2 4 12.2 9 12.1	197.22 197.35 202.75 197.50
4	C-1	¹ _J _{P,C}	C-2 ² J	P,C	c-3 ³ .	^J _{P,C} C	:0
b h i# j	- 128.54 128.3 ^{a)} 135.22	179.3 180 ^{a)} 182.5	 136.96 137.36 139.15	- 12.1 4 12.1 3 11.1 4	- 33.00 39.92 	 19.4 20 19.5 20 17.7 20	03.65 09.69 04.10

^{a)} Auf Grund der Überlagerung mit einer Linie des C-3-Dubletts von 3i nicht exakt zu bestimmen.

NMR-Daten: Das dem Carbonyl benachbarte 3-H erscheint als dublettisiertes Dublett mit ${}^{4}J_{3,P} \approx 5$ und ${}^{3}J_{2,3} \approx$ 15.4-16.0 Hz, wodurch die *trans*-Anordnung der Vinylprotonen bewiesen ist. Das 2-H-Signal vereinfacht sich bei den Vertretern **3a**-**g** mit einer P-CH₂-Gruppe zu einem markanten Sextett, das aus den Größenverhältnissen der Kopplungen mit den Methylenprotonen, dem Phosphor und dem Proton 3-H (${}^{3}J_{1,2} \approx {}^{3}J_{2,P} \approx 8$, ${}^{3}J_{2,3} \approx 16$ Hz) resultiert. Bei **3e**, **f** und **g** (R³ = *t*-Bu, Ph, OEt) konnten in den

Bei 3e, f und g ($\mathbb{R}^3 = t$ -Bu, Ph, OEt) konnten in den Spektren der Rohprodukte Spuren der Z-Isomeren nachgewiesen werden – erkennbar an einem gegenüber dem E-Isomeren um ca. 0.6 ppm nach höherem Feld verschobenen Dublett eines Quartetts ($J_{2,P} \approx J_{2,1} \approx 8, J_{2,3} \approx 11$ Hz) für 2-H und einem erwartungsgemäß um den gleichen Betrag zu tieferem Feld verschobenen Signal für das in *cis*-Stellung zum Carbonyl befindliche $P-CH_2$.

2-Alkenylphosphonate 3 mit $R^1 = H$ und $R^2 = Alkyl$ oder Phenyl isomerisieren unter den Bedingunen der Olefinierungsreaktion (30–40 h in siedendem Benzol oder Toluol) – wie die Beispiele 3h-j zeigen – in erheblichem Ausmaß zu den α -substituierten (4-Oxo-1-alkenyl)phosphonaten 4. (Ein ähnliches Verhalten wurde übrigens auch bei den zu 3b analogen Triphenylphosphoniumsalzen beobachtet^{10,15)}.)

Das Vorliegen der Isomeren 3 und 4 wurde aus den spektroskopischen Daten der Isomerenmischung ermittelt. Zum Beispiel fallen im Protonenresonanzspektrum von 3h/4h ($R^1 = R^3 = Me$) die Signale zweier Acetylgruppen bei $\delta = 2.21$ (4h) und 2.28 (3h) sowie drei markante Vinylprotonen-Signale auf: Von diesen sind das Dublett eines Dubletts bei $\delta = 6.17$ (${}^{3}J_{2,3} = 16.0$, ${}^{4}J_{3,P} =$ 4.9 Hz) dem 3-H und das Multiplett bei 6.82 (${}^{3}J_{2,3} = 16.0, {}^{3}J_{1,2} =$ 7.1, ${}^{3}J_{2,P} = 7.1$ Hz) dem 2-H von 3h zuzuordnen. Das markante Dublett eines Tripletts bei $\delta = 6.71$ mit ${}^{3}J_{2,P} = 23.0$ und ${}^{3}J_{2,3} =$ 7.1 Hz ist unschwer als das in vicinaler cis-Anordnung zum Phosphor befindliche Vinyl-H von E-4h zu erkennen, dessen zweiter Kopplungspartner - die benachbarte CH2-Gruppe - erwartungsgemäß als Dublett eines Dubletts bei $\delta = 3.33 (J_{2,3} = 7.1, {}^4J_{3,P} =$ 3.6 Hz) erscheint. Die Signale der α-Methyl-Gruppen findet man als Dublett eines Dubletts bei $\delta = 1.39$ für 3h und als Dublett bei 1.84 ppm für das 1-Alkenyl-Derivat 4h.

Im ¹³C-NMR-Spektrum des Isomerengemisches erkennt man die Signale eines isolierten und eines konjugierten Carbonyls bei $\delta =$ 203.65 (**4h**) und 197.35 (**3h**); die dem Phosphor benachbarten Kohlenstoffe von **3h** (tert. C bei $\delta =$ 35.8, ¹ $J_{PC} =$ 138.4) und **4h** (quart. C bei $\delta =$ 128.54, ¹ $J_{PC} =$ 179.3) sind ebenfalls leicht zu identifizieren, ebenso wie das Dublett des in vicinaler *trans*-Anordnung zum Phosphor befindlichen C-3 bei 43.00 ppm, dessen ³ $J_{PC} \approx$ 20 Hz einen weiteren Hinweis auf die *E*-Geometrie von **4h** liefert ¹⁶.

Synthese der (trans-2,3-Epoxy-4-oxoalkyl)phosphonate 5 aus den 2-Alkenylphosphonaten 3

2-Alkenylphosphonate 3 mit $R^1 = R^2 = H$ und $R^3 =$ Alkyl, vor allem aber mit $R^3 =$ Aryl (3f) sind bei Raumtemperatur nicht stabil. Sie dimerisieren – besonders in Gegenwart von Basen – leicht zu Verbindungen des Typs 6^{17} . Dennoch gelingt ihre Epoxidierung unter schonenden Reaktionsbedingungen (H₂O₂/Na₂CO₃/Methanol, 10 bis 20°C) – analog zur Umsetzung der entsprechenden 3-Oxo-1-alkenyl-Derivate³. Dabei werden die *trans*-Epoxide **5b**-**e** (R¹ = R² = H, R³ = Alkyl) und **5k** (R¹ = R² = R³ = Me) in guten Ausbeuten erhalten, während der Versuch zur Darstellung von **5f** nur unbefriedigende Resultate liefert (Tab. 3, Methode A).

In den ¹H-NMR-Spektren der Verbindungen **5b**-f crscheint das Signal der diastereotopen P-CH₂-Protonen erwartungsgemäß als AB-Teil eines ABMX-Systems in Form eines markanten 16-Linien-Signals ($\delta_{\rm H} \approx 2.0, \delta_{\rm B} \approx$ 2.3-2.5). Das komplexe Multiplett des benachbarten 2-H (M-Teil) findet man bei 3.2-3.4 ppm. Das Dublett für 3-H schließlich bei $\delta = 3.3-4.3$ mit der erwartungsgemäß¹⁸)

Schema 2

Tab. 3. Ausbeuten und charakteristische ¹H-NMR-Daten der nach Methode A, B und C dargestellten (2,3-Epoxy-4-oxoalkyl)phosphonsäureester 5 (und 9) [250 MHz, CDCl₃, TMS, δ-Werte, J (Hz)]

5/9	A (85)	B (% <u>5+9</u>)	C (% <u>5+9</u>)	<u>5</u> :9_	2-н	<u>5</u> 3-н	<u>J</u> 2,3	2-н	<u>9</u> 3-н	<u>J</u> 2,3
	75	89		1:0	3.37 m	3.33 d	\$ 2	_	-	_
il. c	64				3.32 m	3.38 d	₹ 2	-	-	-
d	69	91		9:1	3.25 m	3.50 d	€ 2	-	3.84 d	5.0
e e	73	81	34	1:3	3.19 m	3.84 d	€2	3.58 m	4.02 d	4.8
f	10 ^{a)}	86	71	10:1	3.39 m	4.29 d	≰ 2	3.76 m	4.47 d	4.6
h	< 10	93	50	1:0	3.34 m	3.32 t ^{b)}	≪ 2			-
k H	73	90		1:0	3.29 dd ⁰	²⁾ 3.41 d	¢ 2			-

Methode A: Epoxidierung von 3 (MeOH, H₂O₂, Na₂CO₃, 15-20°C; Methode B: Cyclisierung von 8 (Et₃N, C₆H₆, 0-20°C); Methode C: Aldolreaktion von 7 mit 1 und nachfolgende Cyclisierung ohne Isolierung von 8 (Ausb. bezogen auf 7). ^{a)} Als Hauptprodukt wurden 72% 6f isoliert. $-{}^{b)}{}^{4}J_{3,P} \approx 2$ Hz. $-{}^{c)}{}^{3}J_{2,P} \approx 2.5$ Hz.

Chem. Ber. 121, 299-308 (1988)

6	C-1(đ)	¹ J _{P,C}	C-2(d)	2 _.	C-3(dd)	³ J _{P1} C	³ J _{P2} C	C-4(s)	C-5(d)	³ _J _{P,C}	C-6(s)	C-41d)	¹ J _{P,C}	C-3(s)
b	28.44	138.9	134.55	9.4	145.24	7	14	30.16	47.78	14	206.88	27.37	139.5	199 .4 0
₫	28.92	138.6	133.41	9.1	143.66	9	14	28.43	44.36	:0.5	212.95	^{a)}	^{a)}	205.82
£	29.22	138.1	135.76	9.8	144.36	9.1	13.7	29.52	42.53	10.0	198.73	27.32	139.2	198.33

Tab. 4. ¹³C-NMR-Daten der Dimeren 6 [250 MHz, CDCl₃, TMS, δ-Werte, J (Hz), Numerierung der C-Atome wie in Schema 1]

^{a)} Eine Linie des C-4'-Dubletts gestört durch C-4-Signal.

sehr kleinen Kopplung von ${}^{3}J_{2,3} \leq 2$ Hz bestätigt die *trans*-Stellung der beiden Oxiran-Wasserstoffe (vgl. Tab. 3).

Bci den Epoxidierungsreaktionen wurden neben 5b-egelegentlich auch geringe Mengen der aus der Dimerisierung von 3 resultierenden Verbindungen 6 isoliert. Bei Umsetzung von 3f ($\mathbb{R}^3 = \mathbb{P}h$) wird das Dimere 6f hingegen zum Hauptprodukt: Die α,β -Dimerisierung von 3 läßt sich - wie in Schema 2 dargestellt – durch eine Michael-Addition des aus 3 gebildeten Allylcarbanions A/A' an das Enon-System in 3 erklären. Eine anschließende 1,3-H-Verschiebung ($D \rightarrow D'$) und Reprotonierung von D'' führen schließlich zu der für 6 angegebenen Struktur.

Eine mit analoger Regioselektivität, jedoch unter wesentlich drastischeren Reaktionsbedingungen ablaufende Dimerisierung α,β -ungesättigter Carbonylverbindungen und Nitrile ist schon seit längerem bekannt¹⁹.

Die Struktur der Verbindungen 6 wurde in erster Linie aus den Kernresonanz-Daten ermittelt, wie hier am Beispiel von 6b erläutert sei: Im relativ komplexen ¹H-NMR-Spektrum findet man die Singuletts zweier Acetylgruppen bei $\delta = 2.05$ und 2.34 sowie das markante Quartett eines Vinylprotons, dessen chemische Verschiebung ($\delta = 6.66$) und Kopplung (${}^{3}J_{HH} = {}^{3}J_{HP} = 7.8$ Hz) gut mit den für **3b** ermittelten Werten (2-H: $\delta = 6.74$, ${}^{3}J_{2,P} = {}^{3}J_{2,CH_2} =$ 7.9 Hz) übereinstimmen und demnach auf das Vorliegen einer (E)- $P-CH_2-CH=C(R)-COMe$ -Gruppierung hinweisen. Im ¹³C-NMR-Spektrum erscheinen die Dubletts zweier P-CH2-Gruppen $[\delta = 28.44 \text{ (C-1) bzw. 27.37 (C-4')}]$, die leicht an den großen ¹J_{PC}-Werten von ca. 139 Hz zu erkennen sind, sowie das Dublett eines weiteren sekundären Kohlenstoffs bei $\delta = 47.78 \text{ mit } {}^{3}J_{PC} = 14 \text{ Hz}$ (C-5) und das Singulett eines tertiären Kohlenstoffs bei $\delta = 30.16$ (C-4). Letzterem entspricht im Protonenresonanzspektrum ein komplexes Multiplett bei $\delta = 3.42$, dessen Nachbarschaft zum - bei höherem Feld gelegenen - $P - CH_2$ -Multiplett (CH₂-4') und zum Multiplett für CH2-5 durch selektive Entkopplung bewiesen wurde. ¹³C-Signale bei $\delta = 199.40$ und 206.88 sowie die IR-CO-Banden bei 1670 und 1715 cm⁻¹ stützen die Strukturermittlung. (Die in Tab. 4 zusammengefaßten ¹³C-NMR-Daten verdeutlichen im übrigen die gute Übereinstimmung mit den Werten von 6d und 6f.)

Epoxyphosphonate 5 (und 9) durch Aldolreaktion der (1-Formylalkyl)phosphonate 1 mit α -Bromketonen 7 und Cyclisierung der resultierenden Bromhydrine 8

Der in Schema 1 dargestellte Weg zum Aufbau der Titelverbindungen ist – wie schon erwähnt – auf Grund der partiellen Isomerisierung $3\rightarrow 4$ nicht zur Synthese von α substituierten Epoxiden 5 (R¹ = Alkyl, Ph, R² = H) und wegen der außerordentlich leicht ablaufenden Dimerisierung $3 \rightarrow 6$ auch nicht für Vertreter mit R^3 = Phenyl geeignet.

Weitgehend unabhängig von den Substituenten gelingt jedoch die C-C-Verknüpfung über eine durch $Sn(OTf)_2$ gesteuerte Aldolreaktion von α -Bromketonen 7 mit den (1-Formylalkyl)phosphonaten 1 und Cyclisierung der resultierenden Bromhydrine 8 (Schema 3). Dieser im allgemeinen mit geringeren Gesamtausbeuten ablaufende Weg zu den Epoxyphosphonaten 5 erlaubt – wie die Beispiele 8h/5h bzw. 8f/5f in Tab. 5 und 3 (Methode B, C) zeigen – nun auch die Synthese von Derivaten mit R¹ = Alkyl bzw. R³ = Phenyl. Der Aufbau von Epoxiden mit R¹ = Ph und R² = H ist jedoch auch nach diesem Weg nicht gelungen.

Schema 3

Sn(II)-Enolate verschiedenster Carbonylverbindungen wurden in den letzten Jahren von Mukaiyama zu oftmals mit beachtlicher Stereoselektivität ablaufenden Additionsreaktionen an Carbonylderivate (Aldolreaktionen)²⁰, Iminoverbindungen²¹ und aktivierte Olefine (Michael-Additionen)²² herangezogen. So wurde auch ein einfacher Weg zur stereoselektiven Synthese von *cis*- α , β -Epoxycarbonylverbindungen beschrieben, bei dem die Sn(II)-Enolate von α -Bromketonen mit Aldehyden umgesetzt werden²³. Die dabei bevorzugt gebildeten *syn*- α -Brom- β -hydroxycarbonylverbindungen können unter Bedingungen kinetischer Kontrolle stereoselektiv zu

Tab. 5. Durch Sn(OTf) ₂ gesteuerte Aldolreaktion der α-Bromketone 7 mit den (1-Formylalkyl)phosphonaten 1 zu den Bromhydrine [250 MHz, CDCl ₃ , TMS, δ-Werte, J (Hz)]												
	1	<u>7</u>	8	Lösungs- mittel	Temp. (^O C)	Reak- tions-	Ausb. (%)	SC/DC ^{a)} /R _F	Isomeren- verhältnis	$\delta_{C\underline{HBr}^{(J_2,3)}}$		

<u>1</u>	<u>7</u>	8	mittel	(°C)	tions- zeit (h)	(%)	SC/DC ^{a)} /R _F	verh <u>anti</u>	ält :	nis syn	O _{CHBr} (J <u>anti</u> (?)	2,3 ⁾ <u>syn</u>	(?)
a	đ	<u>b</u>	THF -	70- (-65)	2.5	63	A/ 0.27	2	:	3 ^{b)}	4.29 (7.5)	4.60	(3.4)
a	d	d	СН_С1	50-(-45)	3	46	B/ 0.38	1	:	3 ^{c)}		4.76	(3.8)
<u>a</u>	e	ē	CH,C1, -	70-(-65)	2.5	45	B/ 0.43	0	:	1 ^{d)}		4.98	(3.6)
<u>a</u>	f	f	THF -	70-(-65)	2	73	C/ 0.35	3	:	4 ^{e)}	5.30 (8.0)	5.56	(4.0)
đ	b	h	CH2C12 -	45-(-35)	6.5	43	B/ 0.39	1	:	2 ^{b,e)}	4.78 (9.0)	4.51	(4.0)
₫	p =	k H	CH ₂ Cl ₂ -	4 0-(-35)	7.5	30	B/ 0.29	0	:	_d)		4.81	(3.2)

^{a)} A: Essigester/Methanol (19:1); B: Dichlormethan/Essigester (3:7); C: Dichlormethan/Essigester (1:1). – ^{b)} Das Diastereomerenverhältnis wurde aus der Integration der CH₃-Singuletts im ¹H-NMR-Spektrum ermittelt. – ^{c)} Das Diastereomerenverhältnis wurde aus der Integration der COCHMe₂-Septetts im ¹H-NMR-Spektrum ermittelt. – ^{d)} Nur ein Isomeres. – ^{e)} Das Diastereomerenverhältnis wurde aus der Integration der CHBr-Dubletts im ¹H-NMR-Spektrum ermittelt.

cis-Epoxiden cyclisiert werden, während sonst die stabileren trans-Isomeren zu erwarten sind.

Die aus der Aldolreaktion der Formylphosphonate 1a, b, d mit den Sn(II)-Enolaten der aus Schema 3 ersichtlichen Bromketone 7 erhaltenen Addukte 8 erwiesen sich im allgemeinen als Diastereomerengemische mit erwartungsgemäß sehr komplexen ¹H-NMR-Spektren. Bei 8b, f und h waren jeweils zwei CHBr-Signale als Dubletts mit deutlich verschiedenen Kopplungskonstanten (${}^{3}J_{23} = 3.2-4$ bzw. 8-9 Hz) zu erkennen. Nur die Umsetzung von 1a mit 7e ($\mathbf{R}^3 = t\mathbf{B}\mathbf{u}$) verlief stereospezifisch zum syn-Addukt²⁴⁾ 8e. (Auch bei der Umsetzung von 1d mit 7b wurde nur ein Diastercomeres erhalten, das jedoch unter den Reaktionsbedingungen schon in erheblichem Ausmaß zum Epoxid 5k cyclisierte.) 8e lieferte bei Behandlung mit Triethylamin (Benzol, Raumtemp.) bevorzugt das cis-Epoxid 9e (neben 25% 5e), wodurch seine syn-Geometrie bewiesen ist. (In Übereinstimmung mit 8e werden in Tab. 5 die Diastereomeren mit ${}^{3}J_{2,3} \leq 4$ Hz mit einigem Vorbehalt als syn-lsomere und die Verbindungen mit ${}^{3}J_{2,3} \leq 9$ Hz als anti-Verbindungen bezeichnet.)

Die Diastereomerengemische 8 lieferten den Erwartungen entsprechend^{23a)} bei Umsetzung mit Triethylamin in Benzol bevorzugt (8f, d) oder ausschließlich (8b, h, k) die thermodynamisch stabileren *trans*-Epoxide 5. Nur 8e reagierte – wie schon erwähnt – überwiegend zum *cis*-Isomeren 9e, das im ¹H-NMR-Spektrum an der gegenüber dem *trans*-Isomeren 5e deutlich größeren vicinalen Kopplung der beiden Oxiran-Wasserstoffe (${}^{3}J_{2,3} = 4.8$ Hz) zu erkennen ist¹⁸⁾.

Die Synthese der Epoxide 5 (+9) nach dem in Schema 3 skizzierten Weg führt im allgemeinen zu besseren Ausbeuten, wenn die aus der Aldolreaktion resultierenden, recht unbeständigen Addukte 8 ohne vorherige Isolierung zur Cyclisierung eingesetzt werden.

Die beiden soeben vorgestellten Synthese-Wege ermöglichen nunmehr den Aufbau von vielfältig substituierten Epoxyphosphonaten 5, über deren Verwendung bei regioselektiven Heterocyclisierungsreaktionen mit Thioamiden und 2Mercaptoazolen sowie Isomerisierung zu (2,4-Dioxoalkyl)phosphonsäureestern wir in Kürze berichten werden.

Für die Bereitstellung von Förderungsmitteln danken wir der Hochschuljubiläumsstiftung der Stadt Wien. Dem Fonds zur Förderung der wissenschaftlichen Forschung in Österreich sei für die Bereitstellung des Bruker-WM-250-NMR-Gerätes im Rahmen des Projekts Nr. 4009 gedankt. Herrn Dr. W. Silhan danken wir für die Aufnahme der NMR-Spektren und Frau S. Kotzinger für die experimentelle Mitarbeit.

Experimenteller Teil

DC: Fertigplatten (Merck), Kieselgel 60 F_{254} , Schichtdicke 0.25 mm, Detektion der Substanzen unter einer UV-Lampe und in einer Iodkammer. – SC: Kieselgel 60 (Merck), Korngröße 0.063–0.2 mm. – Schmelzpunkte: Heizmikroskop nach Kofler, unkorrigiert. – ¹H- und ¹³C-NMR-Spektren: Bruker WM 250, ¹³C-Aufnahmen *J*-moduliert, Lösungsmittel, wenn nicht anders angegeben, CDCl₃, interner Standard TMS. – IR-Spektren: Perkin-Elmer 377, Lösungsmittel Dichlormethan. – MS: Varian CH-7. – PE = Petrolether.

Ausgangsverbindungen: (Formylmethyl)phosphonsäure-diethylester (1a) wurde durch Arbusow-Reaktion von Triethylphosphit mit Bromacetaldehyd-diethylacetal und nachfolgende Deblockierung nach Lit.^{13a)} hergestellt, die (1-Formylalkyl)phosphonate 1b-d wurden durch Formylierung der entsprechenden Alkylphosphonsäureester gewonnen (1b und 1d nach Lit.^{13d)}, 1c nach Lit.^{13e)}.

Die (2-Oxoalkyliden)triphenylphosphorane 2a - g wurden ebenfalls nach Literaturangaben gewonnen (2a nach Lit.²⁹), 2b und 2fnach Lit.²⁶), 2c nach Lit.²⁷), 2d nach Lit.²⁸), 2e nach Lit.²⁹ und 2gnach Lit.³⁰).

Die α -Bromketone 7 wurden nach folgenden Literaturangaben gewonnen: 7b nach Lit.³¹, 7d nach Lit.³², 7e nach Lit.³³ und 7f nach Lit.³⁴. Sn(II)-Triflat wurde in Analogie zu Lit.^{20a}) aus SnCl₂ und überschüssiger Trifluormethansulfonsäure gewonnen.

Darstellung der [(E)-4-Oxo-2-alkenyl]phosphonsäureester 3

Allgemeine Vorschrift: Eine Lösung von je 10.0 mmol Formylphosphonat 1 und Phosphoran 2 in 50 ml-wasserfreiem Toluol (für 1d/2b Xylol) wird zum Sieden erhitzt, bis laut DC kein Ausgangsmaterial mehr nachzuweisen ist. Dann wird i.Vak. eingedampft,

8

Triphenylphosphanoxid durch Verreiben des Rückstands mit Ether/PE (60° C) weitgehend zur Kristallisation gebracht, abgetrennt und das Filtrat i.Vak. eingeengt. Details zur Isolierung sind bei den einzelnen Verbindungen angegeben.

(E)-(4-Oxo-2-butenyl)phosphonsäure-diethylester (3a): Reaktionszeit 16 h; abschließende Destillation aus einem Kugelrohr (Badtemp. 115 – 120 °C/0.01 Torr) lieferte 597 mg (29%) 3a als blaßgelbes Öl. Eine Analysenprobe wurde durch SC an Kieselgel (Essigester/MeOH 19:1, $R_f = 0.51$) gewonnen. – ¹H-NMR: $\delta = 1.37$ (t; 6H, POCH₂CH₃), 4.16 (quint; 4H, OCH₂), 9.56 (d, $J_{34} = 7.8$ Hz; 1H, CHO), weitere: Tab. 1. – IR (CH₂Cl₂): v = 1695 cm⁻¹ (C=O), 1645 (C=C), 1242 (P=O) und 1028 (P-OC).

C₈H₁₅O₄P (206.2) Ber. C 46.60 H 7.35 Gef. C 46.09 H 7.48

(*E*)-(4-Oxo-2-pentenyl) phosphonsäure-diethylester (**3b**): Reaktionszeit 17 h; abschließende Kugelrohr-Destillation (Badtemp. 110–120°C/0.01 Torr) lieferte 1.96 g (89%) .**3b** als hellgelbes Öl. Eine Analysenprobe wurde durch SC an Kieselgel (Dichlormethan/Essigester 1:1, $R_f = 0.25$) gewonnen. – ¹H-NMR: $\delta = 1.35$ (t; 6 H, OCH₂CH₃), 2.29 (s; 3H, COCH₃), 4.14 (quint; 4H, P–OCH₂), weitere: Tab. 1. – ¹³C-NMR: $\delta = 16.45$ (³J_{P,C} = 5.8 Hz, OC–CH₃). 27.01 (CH₃), 62.34 (²J_{P,C} = 6.7 Hz; POCH₂), 197.22 (CO), weitere: Tab. 2. – IR (CH₂Cl₂): v = 1698 und 1675 cm⁻¹ (C=O), 1630 (C=C), 1235 (P=O) und 1028 (P–OC).

C₉H₁₇O₄P (220.2) Ber. C 49.09 H 7.78 Gef. C 48.62 H 7.93

(E)-(4-Oxo-2-hexenyl)phosphonsäure-diethylester (3c): Reaktionszeit 20 h; abschließende Kugelrohr-Destillation (Badtemp. 110--120°C/0.01 Torr) lieferte 2.15 g (92%) 3c; Reinigung der Analysenprobe wie bei 3b ($R_f = 0.27$). – ¹H-NMR: $\delta = 1.10$ (t; 3H, COCH₂CH₃), 1.35 (t; 6H, OCH₂CH₃); 2.60 (q; 2H, COCH₂), 4.13 (quint; 4H, P - OCH₂), weitere: Tab. 1.

C10H19O4P (234.2) Ber. C 51.28 H 8.18 Gef. C 50.84 H 8.37

(E)-(5-Methyl-4-oxo-2-hexenyl) phosphonsäure-diethylester (3d): Reaktionszeit 25 h; abschließende Kugelrohr-Destillation (Badtemp. 110-120°C/0.01 Torr) lieferte 2.21 g (89%) 3d als hellgelbes Öl. Reinigung der Analysenprobe durch SC an Kieselgel (Dichlormethan/Essigester 1:1, $R_f = 0.32$). – ¹H-NMR: $\delta = 1.11$ (d; 6H, CH(CH₃)₂), 1.33 (t; 6H, POCH₂CH₃), 2.84 (sept; 1H, CHMe₂), 4.14 (quint; 4H, P-OCH₂), weitere: Tab. 1. – IR (CH₂Cl₂): v = 1698 und 1675 cm⁻¹ (C=O), 1630 (C=C), 1245 (P=O) und 1028 (P-OC).

C11H21O4P (248.3) Ber. C 53.21 H 8.54 Gef. C 52.84 H 8.71

(E)-(5,5-Dimethyl-4-oxo-2-hexenyl) phosphonsäure-diethylester (3e): Reaktionszeit 30 h; abschließende Kugelrohr-Destillation (Badtemp. 120–130°C/0.01 Torr) lieferte 2.33 g (89%) 3e als hellgelbes Öl. Eine Analysenprobe wurde durch SC an Kieselgel (Essigester/Methanol 19:1, $R_f = 0.50$) gewonnen. – 'H-NMR: $\delta =$ 1.17 (s; 9 H, C(CH₃)₃), 1.33 (t; 6 H, POCH₂CH₃), 4.13 (quint, 4 H, P-OCH₂), weitere: Tab. 1. – IR (CH₂Cl₂): v = 1695 cm⁻¹ (C=O) und 1628 (C=C). – Im 'H-NMR-Spektrum des rohen 3e registrierte man daneben auch die Signale von <10% des Z-Isomeren (dd bei $\delta = 3.38$ für PCH₂ und dq bei $\delta = 6.20$ für 2-H).

 $C_{12}H_{23}O_4P$ (262.3) Ber. C 54.95 H 8.84 Gef. C 54.62 H 9.01

(E)-(4-Oxo-4-phenyl-2-butenyl)phosphonsäure-diethylester (3f): Reaktionszeit 22 h; durch Flash-Chromatographie an 400 g Kieselgel (Dichlormethan/Aceton 14:1) wurden 2.62 (92%) 3f als gelbes Öl ($R_f = 0.25$) erhalten. Durch weiteres Eluieren mit Essigester/ Methanol (19:1) erhielt man 140 mg (5%) des Dimeren 6f ($R_f =$ 0.33). Eine Analysenprobe von 3f wurde durch rasche SC an Kieselgel (Laufmittel wie oben) gewonnen. (3f dimerisiert außerordentlich leicht. Schon nach wenigen Stunden bei Raumtemp., aber auch nach mehrtägiger Lagerung bei -20° C, war 6f mittels DC wieder nachzuweisen). -3f: ¹H-NMR: $\delta = 1.34$ (t; 6H, POCH₂CH₃), 4.16 (quint; 4H, P-OCH₂), 7.48 (m; 2H), 7.57 (m; 1H) und 7.95 (m; 2H, Aromaten-H), weitere: Tab. 1. - ¹³C-NMR: $\delta = 16.45$ (d, ³J_{PC} = 5.9 Hz; POC-CH₃), 31.11 (d, ¹J_{PC} = 138.0 Hz, PCH₂), 62.29 (d, ²J_{PC} = 6.7 Hz, P-OCH₂), 128.62 und 132.93 (Aromaten-CH), 130.09 (d, ³J_{PC} = 13.3 Hz, C-3), 137.56 (d, ²J_{PC} = 11.3 Hz; C-2) ca. 137.5 (quart. Aromaten-C).

C14H19O4P (282.3) Ber. C 59.56 H 6.78 Gef. C 59.08 H 6.89

Im ¹H-NMR-Spektrum des rohen **3f** registrierte man daneben auch die Signale von 5% des Z-Isomeren (dd bei $\delta = 3.44$ für PCH₂, und m bei $\delta = 6.40$ für 2-II).

(E)-4-(Diethoxyphosphinyl)-2-butensäure-ethylester (3g): Reinigung durch Kugelrohrdestillation bei 0.01 Torr. Das Produkt ist nach den in Lit.^{8c)} angegebenen ¹H-NMR-Daten identisch mit der dort beschriebenen Verbindung. – ¹H-NMR: $\delta = 1.29$ (t; 3H, C-OCH₂CH₃), 1.33 (t; 6H, P-OCH₂CH₃), ca. 4.15 (m; 6H, P-OCH₂ + C-OCH₂), weitere: Tab. 1. Im ¹H-NMR-Spektrum des Rohprodukts findet man noch die Signale von ca. 5–10% des Z-Isomeren [(Z)-3g: $\delta = 3.43$ (dd, ²J_{4,P} = 23.0, ³J_{4,3} = 8.2 Hz; PCH₂) und 6.29 (dq, ³J_{2,3} = 11.4, ³J_{3,P} = ³J_{3,4} = 7.8 Hz; PCH₂CH)].

(E)-(1-Methyl-4-oxo-2-pentenyl)phosphonsäure-diethylester (3h) und (E)-(1-Methyl-4-oxo-1-pentenyl)phosphonsäure-diethylester (4h) aus der Umsetzung von 1b mit 2b: Reaktionszeit 28 h in siedendem Benzol. Nach Abtrennen des Triphenylphosphanoxids (2.3 g, 83%) wurde aus dem ¹H-NMR-Spektrum des aus der Benzol-Lösung erhaltenen Rohprodukts das Isomerenverhältnis 3h: 4h \approx 3:4) ermittelt. Durch anschließende Kugelrohr-Destillation (Badtemp. 105-120°C/0.01 Torr) und SC an 150 g Kieselgel (Dichlormethan/Essigester 1:1, $R_f = 0.66$) wurden 1.70 g (73%) der Isomerenmischung 3h + 4h als blaßgelbes Öl erhalten. Die ¹Hund ¹³C-NMR-Daten wurden aus den Spektren der Isomerenmischung ermittelt.

3h: ¹H-NMR: $\delta = 1.34$ (t; 6H, POCH₂CH₃), 1.39 (dd, $J_{Me,1} = 7.1$ Hz, ³ $J_{Me,P}$ durch teilweise Überlagerung mit dem POCH₂CH₃-Signal nicht zu bestimmen; 3H, PCHCH₃), 2.28 (s; 3H, =CHCOCH₃), 4.13 (m; 4H, OCH₂), weitere: Tab. 1. $-^{13}$ C-NMR: $\delta = 13.07$ (² $J_{PC} = 10.5$ Hz, PCH $-CH_3$), ca. 16.5 (POC $-CH_3$), 27.03 (CO $-CH_3$), 62.35 und 62.40 (² $J_{PC} = 6.9$ Hz, POC), weitere: Tab. 2.

4h: ¹H-NMR: $\delta = 1.34$ (t; 6H, POCH₂CH₃), 1.84 (d, ³J_{P,Me} = 13.8 Hz; 3H, PC(CH₃)=), 2.21 (s; 3H, COCH₃), 4.13 (m; 4H, OCH₂), weitere: Tab. 1. $-^{13}$ C-NMR: $\delta = 12.99$ (²J_{PC} = 6.2 Hz, PC-CH₃), ca. 16.5 (POC-CH₃), 29.82 (CO-CH₃), 61.71 (²J_{PC} = 5.5 Hz, POC), weitere: Tab. 2. - IR (CH₂Cl₂): v = 1720 (**3h**, C=O) und 1675 cm⁻¹ (**4h**, C=O).

(E)-2,5-Dimethyl-4-oxo-2-hexenyl)phosphonsäure-diethylester (3i) und (E)-(2,5-Dimethyl-4-oxo-1-hexenyl)phosphonsäure-diethylester (4i) aus der Umsetzung von 1 b mit 2d: Reaktionszeit 30 h in siedendem Toluol. Nach Abtrennen des Triphenylphosphanoxids (2.52 g, 91%) wurde i. Vak. eingeengt und der Rückstand aus einem Kugelrohr (Badtemp. 90–100°C/0.01 Torr) destilliert. Die Isomeren wurden schließlich durch Flash-Chromatographie an 200 g Kieselgel (Laufmittel Dichlormethan/Essigester 1:1) von zwei Satelliten mit größerem R_{Γ} Wert befreit; Ausb. 1.89 g (72%), $R_{\Gamma} =$ 0.35; Isomerenverhältnis laut ¹H-NMR-Spektrum 3i: 4i \approx 65:35. [In den Spektren des Rohprodukts (vor SC) registrierte man daneben auch die Signale von ca. 10% Z-4i.] Die ¹H- und ¹³C-NMR-Daten wurden aus den Spektren der Isomerenmischung ermittelt.

3i: ¹H-NMR: δ = 1.12 (d; 6H, CH(CH₃)₂), 1.34 (t; 6H, POCH₂CH₃), 1.39 (dd, J_{HH} = 7.4, J_{H,P} = 17.9 Hz; 3H, PCHCH₃), ca. 2.9 (m; 2H, PCH, +COCH), 4.11 (m; 4H, POCH₂), weitere:

Tab. 1. $-{}^{13}$ C-NMR: $\delta = 13.16$ (d, ${}^{2}J_{P,C} = 6.4$ Hz; PC-*C*H₃), ca. 16.4 (POC-*C*H₃), 18.35 (CH(*C*H₃)₂), 38.61 (CO-*C*H), 62.26 (${}^{2}J_{P,C} = 5.3$ Hz) und 62.35 (${}^{2}J_{P,C} = 5.0$ Hz; POCH₂), weitere: Tab. 2.

E-4i: ¹H-NMR: $\delta = 1.12$ (d; 6H, CH(CH₃)₂), 1.35 (t; 6H, POCH₂CH₃), 1.83 (d, J_{P,Me} = 14.7 Hz; 3H, PC(CH₃)=), 2.69 (sept; 1II, COCH), 4.11 (m; 4H, POCH₂), weitere: Tab. 1. - ¹⁵C-NMR: $\delta = 12.91$ (PC(CH₃), ca. 16.4 (POC-CH₃), 40.91 (CO-CH), 61.70 (²J_{PC} = 5.5 Hz, POC), weitere: Tab. 2.

Z-4i: ¹H-NMR: $\delta = 1.92$ (dd, $J_{P,Me} = 14.4$, $J_{Me,3} \approx 1$ Hz; PCCH₃), 3.89 (dd, $J_{2,3} = 6.5$, ⁴ $J_{3,P} \leq 2$ Hz; CH₂), 6.44 (dtq, ³ $J_{2,P} = 51.8$, $J_{2,3} = 6.5$, ⁴ $J_{2,Me} \approx 1$ Hz; 2-H). - ¹³C-NMR: $\delta = 40.88$ (CO - CH), 41.00 (s, CO - CH₂), 61.41 (² $J_{P,C} = 5.3$ Hz; POCH₂), 127.00 (¹ $J_{P,C} = 172.4$ Hz; C-1), 140.0 (² $J_{P,C} = 11.2$ Hz; C-2), 211.68 (CO).

(E)-(4-Oxo-1-phenyl-2-pentenyl) phosphonsäure-diethylester (3j) und (E)-(4-Oxo-1-phenyl-1-pentenyl) phosphonsäure-diethylester (4j) aus der Umsetzung von 1c mit 2b: Reaktionszeit 40 h in siedendem Benzol; nach Abtrennen des Triphenylphosphanoxids (2.00 g, 72%) wurde i. Vak. eingeengt und durch Flash-Chromatographie an 260 g Kieselgel (Dichlormethan/Essigester 7:3; $R_f =$ 0.26) gereinigt. Dabei wurden 2.20 g (74%) der Isomerenmischung als gelbes Öl erhalten; Isomerenverhältnis laut ¹H-NMR-Spektrum 3j:4j \approx 1:3. Die ¹H- und ¹³C-NMR-Daten wurden aus den Spektren der Isomerenmischung ermittelt:

3j: ¹H-NMR: δ = 1.10 und ca. 1.3 (2 t; je 3 H, OCH₂CH₃) 2.29 (s; 3 H, COCH₃), 3.81 und ca. 4.1 (2 m; je 2 H, POCH₂), 7.21 und 7.38 (Aromaten-H), weitere: Tab. 1. - ¹³C-NMR: δ = 27.14 (CH₃), weitere: Tab. 2.

4j: ¹H-NMR: $\delta = 1.27$ (t; 6H, POCH₂CH₃), 2.11 (s; 3H, COCH₃), 4.08 (m; 4H, POCH₂), 7.21 und 7.38 (Aromaten-H), weitere: Tab. 1. - ¹³C-NMR: $\delta = 29.92$ (CH₃), weitere: Tab. 2.

(E)-(1,1-Dimethyl-4-oxo-2-pentenyl)phosphonsäure-diethylester (3k): Reaktionszeit 48 h in siedendem Xylol. Durch Destillation aus einem Kugelrohr (Badtemp. 100–110°C/0.01 Torr) wurden 1.91 g (77%) 3k als hellgelbes Öl erhalten. Eine Analysenprobe wurde durch SC an Kieselgel (Laufmittel Dichlormethan/Essigester 1:1, $R_f = 0.21$) gewonnen. – ¹H-NMR: $\delta = 1.34$ (t; 6H, POCH₂CH₃), 1.37 [d, ³J_{P,H} = 19.0 Hz, 6H, PC(CH₃)₂]; 2.30 (s; 3 H, COCH₃), 4.13 (m; 4H, POCH₂), weitere: Tab. 1. – JR (CH₂Cl₂): v = 1700 und 1680 cm⁻¹ (C=O), 1632 (C=C).

C₁₁H₂₁O₄P (248.3) Ber. C 53.21 H 8.54 Gef. C 52.97 H 8.73 Darstellung der Epoxyphosphonate 5 aus den Alkenylphosphonaten 3

Allgemeine Vorschrift: Zu einer Lösung von 10.0 mmol 3 und 2 ml 30proz. H₂O₂ in 25 ml Methanol wird unter Rühren bei ca. 10°C langsam eine Lösung von 500 mg (4.7 mmol) Natriumcarbonat in 10 ml Wasser getropft. Dann wird bis zur vollständigen Umsetzung weitergerührt, wobei die Temp. 15-20°C nicht übersteigen soll (zur Überprüfung des Reaktionsverlaufs wird jeweils eine in Dichlormethan aufgenommene Probe mit Wasser gewaschen und dann erst mittels DC untersucht; Alkenylphosphonate 3 und Epoxyderivate 5 haben sehr ähnliche R_{Γ} Werte, unterscheiden sich jedoch deutlich bei der Detektion: Die Verbindungen 5 sind im UV-Licht nicht, die Vinylverbindungen 3 jedoch gut nachzuweisen. Unter I2 werden die Flecke der Epoxide 5 - nach längerer Induktionszeit - viel deutlicher angefärbt). Anschließend wird i. Vak. auf etwa 1/3 des Volumens eingeengt, die Lösung mit Dichlormethan verdünnt, mehrmals mit Wasser gewaschen, mit Natriumsulfat getrocknet und i. Vak. eingedampft. Details zur Isolierung sind bei den einzelnen Verbindungen angegeben.

[(trans-3-Acetyl-2-oxiranyl)methyl]phosphonsäure-diethylester (5b): Reaktionszeit 4 h; der aus der Dichlormethan-Lösung verbleibende Rückstand lieferte nach Destillation aus einem Kugelrohr (Badtemp. 110–120°C/0.01 Torr) 1.78 g (75%) **5b** als farbloses Öl; $R_t = 0.26$ (Dichlormethan/Essigester 1:1). – Aus dem Destillationsrückstand wurden durch SC an 20 g Kieselgel (Essigester/Methanol 9:1) 170 mg (8%) (E)-[3-Acetyl-4-(diethoxyphosphinylmethyl)-6-oxo-2-heptenyl]phosphonsäure-diethylester (**6b**) als gelbes Öl ($R_t = 0.25$) erhalten.

5b: ¹H-NMR: $\delta = 1.37$ (t; 6H, POCH₂CH₃), 2.11 (s; 3H, COCH₃), 2.02 (δ_A) und 2.25 (δ_B) (AB-Teil eines ABMX-Systems, $J_{A,P} = 19.9, J_{A,B} = 15.0, J_{A,2} = 6.0, J_{B,P} = 18.2, J_{B,2} = 5.5$ Hz; 2H, PCH₂), 4.17 (m; 4H, P-OCH₂), weitere: Tab. 3. $-^{13}$ C-NMR: $\delta = 16.42$ (d, $^{3}J_{P,C} = 6.0$ Hz; POC-CH₃), 24.68 (CO-CH₃), 29.64 (d, $^{1}J_{P,C} = 139.1$ Hz; PC), 52.47 (s, C-2), 59.61 (d, $^{3}J_{P,3} = 6.9$ Hz; C-3), 62.16 (d, $^{2}J_{P,C} = 6.4$ Hz; POC), 204.06 (s, CO). - IR (CH₂Cl₂): v = 1712 cm⁻¹ (C=O), 1240 (P=O), 1025 (P-OC).

C₉H₁₇O₅P (236.3) Ber. C 45.74 H 7.27 Gef. C 45.55 H 7.35

6b: ¹H-NMR: $\delta = 1.27$, 1.28, 1.31 und 1.32 (4 t; je 3 H, POCH₂CH₃), 2.05 (s; 3 H, CH₂COCH₃), ca. 2.15 (m; 2 H, PCH₂CHCH₂), 2.34 (s; 3 H, =CCOCH₃), 2.77-3.22 (m; 4 H, PCH₂CH= + CH₂CO), 3.42 (m; 1 H, CH₂CH-CH₂), 4.02 und 4.10 (2 mc, je 4 H, P-OCH₂), 6.66 (q, ³J_{P,H} = ³J_{H,H} = 7.8 Hz; 1 H, CH=). - ¹³C-NMR: $\delta = 16.39$ und 16.48 (POCH₂CH₃), 26.80 (CH₂CO-CH₃), 28.29 (=CCO-CH₃), 61.44, 61.47 und 62.17 (3 d, ²J_{PC} = 6.7, 6.3 und 6.4 Hz; P-OCH₂), weitere: Tab. 4. - IR (CH₂Cl₂): v = 1715 cm⁻¹ (isoliertes C=O) und 1670 (konjug. C=O), 1240 (P=O) und 1025 (P-OC).

C₁₈H₃₄O₈P₂ (440.4) Molmasse 440 (MS)

{[trans-3-(1-Oxopropy])-2-oxiranyl]methyl]phosphonsäure-diethylester (5c): Reaktionszeit 4 h; der aus der Dichlormethan-Lösung erhaltene Rückstand lieferte nach Destillation aus einem Kugelrohr (Badtemp. 110-120 °C/0.01 Torr) 1.60 g (64%) 5c als farbloses Öl; $R_f = 0.30$ (Dichlormethan/Essigester 1:1). - ¹H-NMR: $\delta = 1.08$ (t; 3H, CCH₂CH₃), 1.37 (t; 6H, POCH₂CH₃), 2.02 (δ_A) und 2.25 (δ_B) (AB-Teil eines ABMX-Systems, $J_{A,P} = 19.3$, $J_{A,B} =$ 15.0, $J_{A,2} = 6.3$, $J_{B,P} = 18.6$, $J_{B,2} = 5.7$ Hz; 2H, PCH₂), 2.46 (mc; 2H, CCH₂), 4.17 (m; 4H, P-OCH₂), weitere: Tab. 3. - IR (CH₂Cl₂): v = 1712 cm⁻¹ (C=O), 1238 (P=O), 1025 (P-OC). C₁₀H₁₉O₅P (250.3) Ber. C 48.00 H 7.67 Gef. C 47.62 H 7.87

{[trans-3-(2-Methyl-1-oxopropyl)-2-oxiranyl]methyl}phosphonsäure-diethylester (5d): Reaktionszeit 4 h; der aus der Lösung erhaltene Rückstand lieferte nach Destillation aus einem Kugelrohr (Badtemp. 110–120°C/0.01 Torr) 1.82 g (69%) 5d als farbloses Öl: $R_f = 0.32$ (Dichlormethan/Essigester 1:1). – Aus dem Destillationsrückstand wurden durch SC an 20 g Kieselgel (Essigester/Methanol 19:1) noch 185 mg (7%) (E)-[(4-Diethoxyphosphinylmethyl)-7-methyl-3-(2-methyl-1-oxopropyl)-6-oxo-2-octenyl]phosphonsäure-diethylester (6d) als gelbes Öl mit $R_f = 0.12$ erhalten.

5d: ¹H-NMR: δ = 1.13 und 1.17 (2 d; je 3 H, CH(CH₃)₂), 1.36 (t; 6H, POCH₂CH₃), 2.02 (δ_A) und 2.30 (δ_B) (AB-Teil eines ABMX-Systems, $J_{A,P} = 19.6$, $J_{A,B} = 15.0$, $J_{A,2} = 6.2$, $J_{B,P} = 18.6$, $J_{B,2} =$ 5.2 Hz; 2H, PCH₂), 2.77 (sept, J = 6.7 Hz; 1H, COCH), 4.15 (m; 4H, P-OCH₂), weitere: Tab. 3. – IR (CH₂Cl₂): v = 1720 cm⁻¹ (C=O), 1240 (P=O), 1025 (P-OC).

C11H21O5P (264.3) Ber. C 49.98 H 8.02 Gef. C 49.47 H 8.29

6d: ¹H-NMR: δ = 1.00, 1.02, 1.05 und 1.08 (4 d; je 3 H, CH(CH₃)₂), 1.32 und 1.35 (2 t; je 6H, POCH₂CH₃), 2.09 (δ _A) und 2.17 (δ _B) (AB-Teil eines ABMX-Systems, $J_{A,H} = J_{B,H} = 6.7, J_{A,B} = 15.8, J_{A,P} = 18.3, J_{B,P} = 17.5$ Hz; 2H, PCH₂CH(), 2.49 (sept; J = 7.0 Hz; 1H, CH₂COCH), 2.89 - ca. 3.2 (m; 4H, CH₂CO + PCH₂CH =), 3.27 (sept; J = 7.0 Hz; 1H, CH₂COCH), 3.51 (dquint, ³J_{HH} = 6.7, ³J_{HP} = 11.2 Hz; 1H, CH₂CH --CH₂), 4.05 und 4.15

(2 m; je 4 H, P – OCH₂), 6.71 (q, ${}^{3}J_{H,H} = {}^{3}J_{H,P} = 7.8$ Hz; 1 H, CH =). – ${}^{13}C$ -NMR: $\delta = 16.42$ und 16.52 (POCH₂CH₃), 18.09 (CH₂COCH(CH₃)₂), 19.11 und 19.81 [= CHCOCH(CH₃)₂], ca. 27.3 (d, ${}^{1}J_{P,C}$ nicht zu ermitteln, da die zweite Linie des PC-Dubletts durch das C-4-Signal bei $\delta = 28.43$ gestört wird; P – CH₂CH), 28.43 (C-4), 34.71 (CH₂CO – CH), 40.84 (= CCO – CH), 61.39 (d, ${}^{2}J_{P,C} = 6.1$ Hz), 61.46 (d, ${}^{2}J_{P,C} = 6.1$ Hz) und 63.08 (d, ${}^{2}J_{P,C} =$ 6.7 Hz, P – OC), weitere: Tab. 4. – IR (CH₂Cl₂): $v_{max} = 1710$ cm⁻¹ (isoliertes C=O), 1665 (konjugiertes C=O), 1240 (P=O) und 1025 (P – OC).

C₂₂H₄₂O₈P₂ (496.5) Molmasse 496 (MS)

{[trans-3-(2,2-Dimethyl-1-oxopropy])-2-oxiranyl]methyl]phosphonsäure-diethylester (5e): Reaktionszeit 10 h; der aus der Dichlormethan-Lösung erhaltene Rückstand lieferte nach Destillation aus einem Kugelrohr bei Badtemp. 120–130°C/0.01 Torr 2.03 g (73%) 5e als farbloses Öl, das im Kühlschrank kristallisierte; Schmp. 37–39°C [aus PE (40°C)]; $R_f = 0.37$ (Dichlormethan/Essigester 1:1). – ¹H-NMR: $\delta = 1.28$ (s; 9H; tBu), 1.36 (t; 6H, POCH₂CH₃), 1.97 (δ_A) und 2.40 (δ_B) (AB-Teil eines ABMX-Systems, $J_{A,P} = 20.0$, $J_{A,B} = 15.7$, $J_{A,2} = 7.1$, $J_{B,P} = 19.5$, $J_{B,2} = 5.2$ Hz; 2H, PCH₂), 4.17 (m; 4H, P-OCH₂), weitere: Tab. 3. – IR (CH₂Cl₂): $\nu = 1714$ cm⁻¹ (C=O), 1240 (P=O), 1020 (P-OC).

C12H23O5P (278.3) Ber. C 51.79 H 8.35 Gef. C 51.72 H 8.21

Versuch zur Epoxidierung von 3f: Eine Lösung von 2.82 g (10.0 mmol) 3f in 25 ml Methanol wurde nach der allgemeinen Vorschrift zur Epoxidierung mit H_2O_2/Na_2CO_3 umgesetzt. Nach 4 h bei Raumtemp. wurde aufgearbeitet. Durch SC an 300 g Kieselgel [PE (60°C)/Aceton 3:2] wurden nacheinander 270 mg (9%) [(trans-3-Benzoyl-2-oxiranyl)methyl]phosphonsäure-diethylester (5f) ($R_f = 0.33$, identisch mit dem auch aus dem Bromhydrin 8f erhaltenen trans-Epoxid) und 2.03 g (72%) (E)-[3-Benzoyl-4-(diethoxyphosphinylmethyl)-6-oxo-6-phenyl-2-hexenyl]phosphonsäure-diethylester (6f) als zähes, gelbes Öl mit $R_f = 0.23$ erhalten.

5f: ¹H-NMR: δ = 1.32 und 1.35 (2 t; je 3H, POCH₂CH₃), 2.06 (δ_A) und 2.52 (δ_B) (2 ddd, je 1H, $J_{A,P} = 20.4$, $J_{A,B} = 15.6$, $J_{A,2} = 7.5$, $J_{B,P} = 19.9$, $J_{B,2} = 5.4$ Hz; PCH₂), 4.16 (m; 4H, P-OCII₂), 7.53 (m; 2H), 7.65 (m; 1H) und 8.15 (m; 2H, Aromaten-H), weitere: Tab. 3. – IR (CH₂Cl₂): $v_{max} = 1692$ cm⁻¹ (C=O), 1230 (P=O) und 1020 (P-OC).

C14H19O5P (298.3) Ber. C 56.37 H 6.43 Gef. C 55.84 H 6.65

6f: ¹H-NMR: $\delta = 1.25$, 1.28, 1.32 und 1.35 (4 t; je 3H, PO-CH₂CH₃), 2.32 (δ_A) und 2.40 (δ_B) (AB-Teil eines ABMX-Systems, davon jeweils nur die 4 mittleren Linien gut zu erkennen, 2H, PCH₂CH \langle), 3.04 (δ_A) und 3.13 (δ_B) (AB-Teil eines ABMX-Systems, davon jeweils nur die 4 mittleren Linien gut zu erkennen, 2H, PCH₂CH=), 3.46-3.90 (m; 3H, CH₂CH-CH₂), 4.10 und 4.13 (2 mc; je 4H, P-OCH₂), 6.29 (q, ³J_{HH} = 8.0 Hz; 1H, CH=), 7.35-7.59 (m; 6H), 7.71 (m; 2H) und 7.97 (m; 2H, Aromaten-H). – ¹³C-NMR: $\delta = 16.36$, 16.42 und 16.51 (POCH₂CH₃), 61.60 (d, ²J_{PC} = 6.4), 61.65 (d, ²J_{PC} = 6.2), 62.08 (d, ²J_{PC} = 6.5) und 62.15 (d, ²J_{PC} = 5.9 Hz; P-OCH₂), 128.06, 128.08, 128.59, 129.87 (*m* + *o*-Aromaten-CH), 132.06 und 133.14 (*p*-Aromaten-CII), 136.92 und 138.63 (quartäre Aromaten-C), weitere: Tab. 4. – IR (CH₂Cl₂): v = 1672 cm⁻¹ und 1648 (C=O), 1240 (P=O) und 1028 (P-OC).

C₂₈H₃₈O₈P₂ (564.5) Molmasse 594 (MS)

[1-(trans-3-Acetyl-2-oxiranyl)-1-methylethyl]phosphonsäure-diethylester (5k): Reaktionszeit 27 h bei 10-22 °C; der aus der Dichlormethan-Lösung erhaltene Rückstand lieferte nach Destillation aus einem Kugelrohr (Badtemp. 80-90 °C/0.01 Torr) 1.92 g (73%) 5k als farbloses Öl; $R_t = 0.28$ (Dichlormethan/Essigester 3:7). – ¹H-NMR: $\delta = 1.08$ (d, ³ $J_{H,P} = 16.3$ Hz; 3H, P-C-CH₃), 1.27 (d, ${}^{3}J_{H,P} = 16.6 \text{ Hz}; 3 \text{ H}, P-C-CH_{3}), 1.36 (t; 6 \text{ H}, POCH_{2}CH_{3}), 2.13 (s; 3 \text{ H}, COCH_{3}), 4.16 (m; 4 \text{ H}, POCH_{2}), weitere: Tab. 3. - IR (CH_{2}Cl_{2}): v = 1712 \text{ cm}^{-1} (C=O), 1240 (P=O) \text{ und } 1025 (P-OC). C_{11}H_{21}O_{5}P (264.3) \text{ Ber. C } 49.98 \text{ H } 8.02 \text{ Gef. C } 49.38 \text{ H } 8.37$

Darstellung der (3-Brom-2-hydroxy-4-oxoalkyl)phosphonsäureester 8

Allgemeine Vorschrift: Zu einer Suspension von 918 mg (2.2 mmol) Sn(II)-Triflat^{20a)} und 263 mg (2.6 mmol) Triethylamin in 5 ml wasserfreiem THF oder Dichlormethan wird unter Ar und Rühren bei -70 °C eine Lösung von 2.0 mmol α -Bromketon 7 in 5 ml des gleichen Solvens getropft. Nach 30 min. Rühren bei -70°C wird eine Lösung von 2.2 mmol 1 in 5 ml Solvens zugetropft und bis zur vollständigen Umsetzung weitergerührt. Danach wird mit 12 ml 10proz. wäßr. Zitronensäure versetzt, mit 200 ml Dichlormethan verdünnt, die Lösung mit Wasser gewaschen, mit Na2SO4 getrocknet, i. Vak. eingedampft, der Rückstand bei 30-40°C/0.01 Torr getrocknet und entweder zur Gewinnung von 8 an 80 g Kieselgel chromatographiert oder ohne weiteres - wie unten angegeben zum Epoxyphosphonat 5 (+9) cyclisiert (Lösungsmittel, Temp. nach der Zugabe von 1. Reaktionszeit und Laufmittel für DC und SC sind in Tab. 5 zusammengefaßt. Die recht unbeständigen Bromhydrine 8 wurden mit Ausnahme von 8e nur durch ihre ¹H-NMR-Spektren charakterisiert).

(3-Brom-2-hydroxy-4-oxopentyl) phosphonsäure-diethylester (8b): Nach SC an 65 g Kieselgel (Essigester/Methanol 19:1) wurden 397 mg (63%) 8b als farbloses Öl erhalten. – 'H-NMR: $\delta = 1.36$ (3 überlagerte t; zusammen 6H, POCH₂CH₃), 2.00–2.27 (m; zusammen 2H, PCH₂), 2.40 und 2.45 (2 s; zusammen 3H, COCH₃), 3.89 (br. s; 1H, mit D₂O austauschbar, OH), 4.03–4.25 (m; 4H, P-OCH₂), ca. 4.3–4.49 (m; 1H, CH-OH), weitere: Tab. 5. – Isomerenverhältnis auf Grund der Integration der CII₃CO-Singuletts und der CHBr-Dubletts 2:3.

(3-Brom-2-hydroxy-5-methyl-4-oxohexyl) phosphonsäure-diethylester (8d): Nach SC an 55 g Kieselgel (Dichlormethan/Essigester 3:7) wurden 318 mg (46%) 8d als farbloses Öl ($R_f = 0.38$) erhalten. – ¹H-NMR: $\delta = 1.17$ und 1.18 (2 d; je 3 H, CH(CH₃)₂), 1.36 und 1.37 (2 t; zusammen 6H, POCH₂CH₃), 2.13 (m; 2H, PCH₂), 3.02 und 3.08 (2 sept; zusammen 1H, COCH), 3.95 (br. s; 1H, mit D₂O austauschbar, OH), 4.06–4.26 (m; 4H, P–OCH₂), 4.27–4.52 (m; 1H, CH–OH + CHBr eines Diastereomeren), 4.76 (d, J =3.8 Hz; ca. 0.75 H, CHBr des zweiten Diastereomeren). Diastereomerenverhältnis aufgrund der Integration der CHMe₂-Septetts und des CHBr-Dubletts annähernd 1:3.

syn-(3-Brom-2-hydroxy-5,5-dimethyl-4-oxohexyl)phosphonsäurediethylester (8e): Nach SC an 40 g Kieselgel (Dichlormethan/Essigester 3:7) wurden 326 mg (45%) 8e als farbloses Öl erhalten, das beim Verreiben mit PE (40°C) kristallisierte; Schmp. 65-68°C. – ¹H-NMR: $\delta = 1.29$ (s; 9II, C(CH₃)₃), 1.37 und 1.39 (2 t; je 3H, POCH₂CH₃), 2.10 (δ_{A}) und 2.19 (δ_{B}) (AB-Teil eines ABMX-Systems; $J_{A,P} = 22.2, J_{A,B} = 15.6, J_{A,2} = 6.8, J_{B,P} = 21.3, J_{B,2} = 6.2 Hz; 2H,$ PCH₂), ca. 4.16 (m; 6H, davon 1H mit D₂O autauschbar; P – OCH₂+ CHOH) 4.98 (d, ³J_{2,3} = 3.6 Hz; 1II, CHIBr). – 8e lieferte beider Cyclisierung mit Triethylamin bevorzugt das cis-Epoxid 9e undist daher als das Diastereomere mit syn-Anordnung von Brom undOII zu betrachten.

> C₁₂H₂₄BrO₅P (359.3) Ber. C 40.11 H 6.75 Gef. C 39.84 H 6.95

(3-Brom-2-hydroxy-4-oxo-4-phenylbutyl) phosphonsäure-diethylester (8f): Nach SC an 80 g Kieselgel (Dichlormethan/Essigester 1:1) wurden 550 mg (73%) 8f ($R_f = 0.35$) als farbloses Öl erhalten. – ¹H-NMR: $\delta = 1.33$ (m, 6H, POCH₂CH₃), 2.15–2.67 (m, 2H, PCH₂), 4.05-4.29 (m, 4H, P-OCH₂ + 1H, mit D₂O austauschbar, OH), 4.49 (mc) und 4.62 (mc, zusammen 1H, CH-OH), 5.30 (d, $J_{2,3} = 8.0$ Hz, mit dem m bei 4.62 korrespondierend) und 5.56 (d, ${}^{3}J_{2,3} = 4.0$ Hz, mit dem m bei 4.49 korrespondierend, zusammen 1H, CHBr), 7.52 (m, 2H), 7.63 (m, 1H) und 8.03 (m, 2H, Aromaten-II). Isomerenverhältnis aus der Integration der CHBr-Dubletts = 3 ($\delta = 5.30/J = 4.0$ Hz): 4 ($\delta = 5.56/J = 8.0$ Hz).

(3-Brom-2-hydroxy-1-methyl-4-oxopentyl) phosphonsäure-diethylester (8h): Nach SC an 30 g Kieselgel (Dichlormethan/Essigester 3:7) wurden 285 mg (43%) 8h als farbloses Öl ($R_f = 0.39$) erhalten. -- ¹H-NMR: $\delta = 1.16$ (dd, $J_{1.Me} = 8.0, J_{Me,P} = 18.0$ Hz) und ca. 1.3 (vom POCH₂CH₃-Signal überlagert, zusammen 3H, PCHCH₃), 1.31 (t; 6H, POCH₂CH₃), 2.29 und 2.62 (2 mc, zusammen 1H, PCH), 2.41 und 2.51 (2 s; zusammen 3H, COCH₃), ca. 4.0 (br. s, mit D₂O austauschbar; 1H, OH), ca. 4.1 (m, teilweise vom P-OCH₂-Signal überlagert; 1H, CH-OH), 4.19 (mc; 4H, P-OCH₂), weitere: Tab. 5. – Isomerenverhältnis auf Grund der Integration der Signale bei $\delta = 1.16, 2.29, 2.51$ und 4.51 für ein Diastereomeres und der Signale bei $\delta = 2.41$ und 4.78 für das zweite Isomere $\approx 2:1$.

(3-Brom-2-hydroxy-1,1-dimethyl-4-oxopentyl)phosphonsäure-diethylester (8k): Durch SC an 40 g Kieselgel (Laufmittel Dichlormethan/Essigester 3:7) wurden 210 mg (30%) 8k als farbloses Öl ($R_f = 0.29$) neben 50 mg (9%) 5k ($R_f = 0.22$) erhalten.

8k: ¹H-NMR: δ = 1.25 und 1.33 (2 d, ³J_{P.Me} ≈ 15 Hz; je 3 H, P-C-CH₃), 1.35 (t; 6 H, POCH₂CH₃), 2.44 (s; 3 H, COCH₃), 4.16 (m; 61I, 1 H mit D₂O austauschbar, P-OCII₂ + CH-OH), 4.81 (d, ³J_{2,3} = 3.2 Hz, 1 H, CHBr).

Darstellung der Epoxyphosphonate 5 (und 9) aus den Bromhydrinen 8

Allgemeine Vorschrift: Zu einer Lösung von 1.0 mmol 8 in 5 ml wasserfreiem Benzol wird unter Rühren und Kühlen mit Eis/Wasser eine Lösung von 505 mg (5.0 mmol) Triethylamin in 2.5 ml Benzol getropft. Nach 1 h wird das Kühlbad entfernt und bis zur vollständigen Umsetzung bei Raumtemp. weitergerührt. Anschließend wird wieder mit Eis gekühlt, das Ammoniumsalz abgesaugt und das Filtrat i. Vak. eingedampft. Details zur Isolierung sind bei den einzelnen Verbindungen angegeben.

Auf Grund der thermischen Labilität der Bromhydrine 8 ist es vorteilhafter, die aus der Aldolreaktion von 7 mit 1 erhaltene Dichlormethanlösung der rohen Bromhydrine i. Vak. einzuengen, 1 h bei Raumtemp. und 0.01 Torr zu trocknen und dann wie oben beschrieben mit Et_3N/C_6H_6 umzusetzen. Die so erhaltenen rohen Epoxide werden dann mittels SC gereinigt.

Cyclisierung von **8b** zu **5b**: Reaktionszeit 2 h; Isolierung durch Kugelrohr-Destillation; Ausb. 210 mg (89%) **5b**; laut ¹H-NMR-Spektrum identisch mit dem aus **3b** erhaltenen *trans*-Epoxid.

Cyclisierung von 8d zu 5d (+9d): Reaktionszeit 5.5 h; das durch Kugelrohr-Destillation (Badtemp. 110–120°C/0.01 Torr) erhaltene farblose Öl (240 mg, 91%) enthielt laut ¹H-NMR-Spektrum neben 5d (identisch mit dem aus 3d erhaltenen *trans*-Epoxid) noch $\leq 10\%$ {[*cis-3-(2-Methyl-1-oxopropyl)-2-oxiranyl]methyl}phosphonsäurediethylester* (9d) [¹H-NMR: d für 3-H bei $\delta = 3.84$, ³J_{2,3} = 5.0 Hz; sept. für COCH bei $\delta = 2.89$].

Cyclisierung von **8e** zu **5e** und **9e**: Reaktionszeit 7 h bei Raumtemp.; das durch Destillation aus einem Kugelrohr (Badtemp. 120 - 130 °C/0.01 Torr) erhaltene farblose Öl (225 mg, 81%) enthielt laut ¹H-NMR-Spektrum 75% {[cis-3-(2,2-Dimethyl-1-oxopropyl)-2-oxiranyl]methyl}phosphonsäure-diethylester (**9e**) und 25% **5e** (identisch mit dem aus **3e** erhaltenen trans-Epoxid).

Bei Cyclisierung ohne vorherige Isolierung von **8e** wurden aus 179 mg (1.0 mmol) Bromketon **7e** 95 mg (34%) 9e + 5e im gleichen Mengenverhältnis erhalten.

Chem. Ber. 121, 299 -- 308 (1988)

9e: ¹H-NMR: $\delta = 1.26$ (s; 9H, tBu), 1.34 (t; 6H, POCH₂CH₃), 2.03 (δ_{A}) und 2.14 (δ_{B}) (AB-Teil eines ABMX-Systems, $J_{A,P} = 20.5$, $J_{A,B} = 15.1$, $J_{B,P} = 19.2$, $J_{A,2} = J_{B,2} = 6.2$ Hz; 2H, PCH₂), 4.17 (m; 4H, P - OCH₂), weitere: Tab. 3.

5f und [(cis-3-Benzoyl-2-oxiranyl)methyl]phosphonsäure-diethylester (**9f**) durch Cyclisierung von **8f**: Reaktionszeit 24 h. Der aus der Benzol-Lösung verbleibende Rückstand wurde an einer Stufensäule mit 70 g Kieselgel (Dichlormethan/Essigester 3:7) chromatographiert. Dabei wurden nacheinander 249 mg (84%) **5f** ($R_f = 0.33$, identisch mit dem bei der Epoxidierung von **3f** erhaltenen *trans*-Epoxid) und 27 mg (9%) **9f** ($R_f = 0.27$) als farblose Öle erhalten.

Durch Umsetzung von 398 mg (2.0 mmol) 7f und 396 mg (2.2 mmol) 1a nach der allgemeinen Vorschrift zur Darstellung von 8 und Cyclisierung des Rohprodukts wurden insgesamt 423 mg (71%) 5f + 9f (Isomerenverhältnis 5f:9f \approx 10:1) erhalten.

9f: ¹H-NMR: $\delta = 1.15$ und 1.18 (2 t; je 3H, POCH₂CH₃), 2.03 (δ_A) und 2.27 (δ_B) (2 ddd, $J_{A,P} = 19.7$, $J_{A,B} = 15.1$, $J_{A,2} = 7.4$, $J_{B,P} = 19.3$, $J_{B,2} = 5.0$ Hz; je 1H, PCH₂), 3.98 (m; 4H, P - OCH₂), 7.53 (m; 3H), 7.66 (m; 1H) und 8.05 (m; 2H, Aromaten-H), weitere: Tab. 3.

C14H19O5P (298.3) Ber. C 56.37 H 6.43 Gef. C 55.87 H 6.64

[1-(trans-3-Acetyl-2-oxiranyl)ethyl]phosphonsäure-diethylester (5h) durch Cyclisierung von 8h: Reaktionszeit 24 h; durch abschlie-Bende Destillation aus einem Kugelrohr (Badtemp. 120-130 °C/ 0.01 Torr) wurden 232 mg (93%) 5h als farbloses Öl erhalten; $R_f = 0.29$ (Dichlormethan/Essigester 3:7).

Durch Umsetzung von 685 mg (5.0 mmol) Bromaceton (7b) mit 1.02 g (5.25 mmol) 1b nach der allgemeinen Vorschrift zur Darstellung der Bromhydrine 8 und Cyclisierung des rohen 8h wurden nach SC an 60 g Kieselgel (Dichlormethan/Essigester 3:7) 630 mg (50%) 5h erhalten. – ¹H-NMR: $\delta = 1.19$ (dd, ³ $J_{P,H} = 17.9$, ³ $J_{H,H} =$ 7.0 Hz; 3H, PCHCH₃), 1:36 und 1.37 (2 t; je 3H, POCH₂CH₃), 2.09 (dquint, ² $J_{H,P} = 27.3$, ³ $J_{H,CH_3} = {}^{3}J_{H,2} = 7.0$ Hz; 1H, PCH), 2.11 (s; 3H, COCH₃), 4.17 (m; 4H, P–OCH₂), weitere: Tab. 3. – IR (CH₂Cl₂): v = 1712 cm⁻¹ (C=O), 1235 (P=O), 1020 (P–OC). C₁₀H₁₉O₅P (250.3) Ber. C 48.00 H 7.67 Gef. C 47.58 H 7.86

Cyclisierung von **8k** zu **5k**: Reaktionszeit 24 h; durch abschließende Destillation aus einem Kugelrohr (Badtemp. 90-100 °C/0.01 Torr) wurden 237 mg (90%) **5k** erhalten, laut ¹H-NMR-Spektrum identisch mit dem aus **3k** erhaltenen *trans*-Epoxid.

CAS-Registry-Nummern

1a: 1606-75-3 / **1b**: 34403-79-7 / **1c**: 33142-26-6 / **1d**: 35078-65-0 / **2a**: 2136-75-6 / **2b**: 1439-36-7 / **2c**: 19753-66-3 / **2d**: 19753-67-4 / **2e**: 26487-93-4 / **2f**: 859-65-4 / **2g**: 1099-45-2 / **3a**: 110905-37-8 / **3b**: 110905-38-9 / **3c**: 110905-39-0 / **3d**: 110905-40-3 / (*E*)-**3e**: 110905-42-5 / (*E*)-**3f**: 110905-43-6 / (*Z*)-**3f**: 110905-45-8 / (*E*)-**3g**: 42516-28-9 / (*Z*)-**3g**: 110905-43-6 / (*Z*)-**3f**: 110905-45-8 / (*E*)-**3g**: 42516-28-9 / (*Z*)-**3g**: 110905-540-9 / **3h**: 110905-547-0 / **3i**: 110905-548-1 / **3j**: 110905-50-5 / **3k**: 110905-52-7 / **4h**: 110934-63-9 / (*Z*)-**4i**: 110905-52-7 / **4h**: 110935-58-3 / **5f**: 110905-57-2 / **6f**: 110905-73-2 / **5k**: 110905-60-7 / **6b**: 110905-53-8 / **5c**: 110905-57-2 / **6f**: 110905-66-1 / **5c**: 110905-63-0 / (*anti*)-**8b**: 110905-62-9 / (*syn*)-**8b**: 110905-63-0 / (*anti*)-**8b**: 110905-63-9 / (*syn*)-**8b**: 110905-68-5 / (*anti*)-**8b**: 110905-67-4 / **8**h: 110905-66-3 / (*syn*)-**8**h: 110905-68-5 / (*anti*)-**8**h: 110905-67-4 / **8**h: 110905-67-6 / (*syn*)-**8**h: 110905-68-5 / (*anti*)-**8**h: 110905-67-71-0 / **9**: 110905-67-71-0 / **9**: 110905-67-71 / **5**: 10905-67-8 / **3**h: 110905-67-8 / **4**h: 110905-71-0 / **5**h: 110905-71-0 / **5**h: 1

^{1) 1a)} D. Hendlin, E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller, F. Wolf, T. W. Miller, L. Chaiet, F. M. Kahan, E. L. Foltz, H. B. Woodruff, J. M. Mata, S. Hernandez, S. Mochales, *Science* 166 (1969) 122. – ^{1b)} B. G. Christensen, W. J. Leanza, T. R. Beattie, A. A. Patchett, B. H. Arison, R. Ormond, F. K. Kuehl jr., G. Albers-Schonberg, O. Jardetzky, *Science* 166 (1969) 123.

- ²⁾ D. Redmore, Chem. Rev. 71 (1971) 315.
- ³⁾ E. Öhler, M. El-Badawi, E. Zbiral, Chem. Ber. 118 (1985) 4099, und dort zitierte Literatur.
- T. Nagase, T. Kawashima, N. Inamoto, Chem. Lett. 1984, 1997.
 Fußnote¹² in Lit.⁴.
- ⁶⁾ E. Öhler, M. El-Badawi, E. Zbiral, Tetrahedron Lett. 24 (1983) 5599.
- ⁷⁾ A. N. Pudovik, V. I. Nikitina, A. M. Kurguzova, Zh. Obshch.
- ¹⁷ A. N. Pudovik, V. I. Nikilia, A. M. Kurguzova, *2h. Obshch. Khim.* 40 (1970) 291 [*Chem. Abstr.* 73 (1970) 3994 v].
 ¹⁸ ¹⁸ H. Pommer, *Angew. Chem.* 72 (1960) 811. ⁸⁰ P. J. van den Tempel, H. O. Huisman, *Tetrahedron* 22 (1966) 293. ^{8c} K. Sato, S. Mizuno, M. Hirayama, *J. Org. Chem.* 32 (1967) 177. ^{8d} E. J. Corey, J. A. Katzencilenbogen, S. A. Roman, *Tetrahedron Lett.* 1971, 1821. ^{8e} E. J. Corey, B. W. Erickson, *J. Org. Chem.* 22 (1967) 177. 39 (1974) 821.
- ^{9) 9a)} H. Mayer, O. Isler in *Carotenoids* (O. Isler, Ed.), S. 399, Birk-hauser-Verlag, Basel und Stuttgart 1971. ^{9b)} G. Pattenden, J. hauser-Verlag, Basel und Stuttgart 1971. – ⁹⁶ G. Pattenden, J. Chem. Soc. C 1970, 1404. – ⁹⁶ S. D. Sharma, R. C. Aggarwal, B. R. Soni, M. L. Sharma, Indian J. Chem., Sect. B, 18 (1979) 81 [Chem. Abstr. 91 (1979) 174 792 d]. – ^{96]} A. Banerjii, Phytochem. 22 (1983) 1028. – ^{96]} Nippon (K. K. Seiko, Inv.) Kokai Tokkyo Koho, J. P. 6069,052 (19. April 1985) [Chem. Abstr. 103 (1985) 141458n].
- ¹⁰ J. Font, P. De March, *Tetrahedron* 37 (1981) 2391, 2493.
 ¹¹ So wurde etwa 3b (R³ = Mc) durch Umsetzung von Allylphosphonsäure-diethylester mit *n*-BuLi/THF/Acetylchlorid bei 2007 with a scholar ¹²). -78°C mit nur 30% Ausbeute erhalten¹²
- -78 °C mit nur 30% Ausseute ernatten ⁻⁷.
 ¹²⁾ E. Ohler, H.-S. Kang, E. Zbiral, unveröffentlichte Ergebnisse.
 ¹³⁾ J. M. Varlet, G. Fabre, F. Sauveur, N. Collignon, Ph. Savignac, *Tetrahedron* 37 (1981) 1377. ^{13b)} E. E. Aboujaoude, N. Collignon, Ph. Savignac, *Synthesis* 1983, 634. ^{13ef} E. E. Aboujaoude, N. Collignon, Ph. Savignac, J. Organomet. Chem. 264 (1984) 9. ^{13d} G. A. Olah, L. Ohannesian, M. Arvanaghi, J. Org. Chem. 49 (1984) 3856. ^{13ef} M. P. Teulade, Ph. Savignac, F F Aboujaoude N. Collignon, J. Organomet. Chem. 287 (1985) E. E. Aboujaoude, N. Collignon, J. Organomet. Chem. 287 (1985)
- 145.
 ¹⁴⁾ ^{14a} G. Fabre, N. Collignon, Ph. Savignac, *Can. J. Chem.* **59** (1981)
 2864. ^{14b)} E. E. Aboujaoude, N. Collignon, Ph. Savignac, *Te-*¹⁴ ⁽¹⁰⁸⁶⁾ ⁴²⁷ und dort zitierte Literatur.

- E. Öhler, H.-S. Kang, E. Zbiral
- ¹⁵⁾ E. Zbiral, L. Berner-Fenz, *Tetrahedron* 24 (1968) 1363.
- ¹⁶⁾ E. Öhler, E. Zbiral, Monatsh. Chem. 115 (1984) 493.
- ¹⁷⁾ So wurden etwa bei Versuchen zu Wittig-Horner-Olefinierungsreaktionen mit 3b beträchtliche Anteile an 6b ($R^3 = Me$) isoliert¹²).
- ¹⁸⁾ E. Pretsch, T. Clerc, J. Scibl, W. Simon in Strukturaufklärung
- ¹⁹ ¹⁹³ T. Saegusa, Y. Ito, S. Kobayashi, S. Tomita, *Chem. Commun.* 1968, 273. ^{19b} T. Saegusa, Y. Ito, S. Kobayashi, S. Tomita, *Chem. Commun.* 1968, 273. ^{19b} T. Saegusa, Y. Ito, S. Tomita, K. Kinoshita, J. Org. Chem. 35 (1970) 670. ^{19c} J. Shabtai, H. Pines, J. Org.
- Chem. 30 (1965) 3854.
 ^{20) 20a)} T. Mukaiyama, N. Iwasawa, R. W. Stevens, T. Haga, *Tetrahedron* 40 (1984) 1381, und dort zitierte Literatur. ^{20b)} T. Mukaiyama, N. Yamasaki, R. W. Stevens, M. Murakami, Chem. Lett. 1986, 213, und dort zitierte Literatur. - 20c) T. Yura, N. Iwasawa, T. Mukaiyama, Chem. Lett. 1986, 187.
- ²¹⁾ T. Yamada, H. Suzuki, T. Mukaiyama, Chem. Lett. 1987, 293, und dort zitierte Literatur.
- ²²⁾ R. W. Stevens, T. Mukaiyama, *Chem. Lett.* **1985**, 851 und 855. ²³⁾ ^{23a)} T. Mukaiyama, T. Haga, N. Iwasawa, *Chem. Lett.* **1982**, 1601. -^{23b)} T. Mukaiyama, T. Yura, N. Iwasawa, *Chem. Lett.*
 - **1985**, 809. ²⁴⁾ Zur Verwendung von "syn" und "anti" vgl. Lit.^{23a)}.
 - ²⁵⁾ H. J. Bestmann, K. Roth, M. Ettlinger, Chem. Ber. 115 (1982) 161.
 - ²⁶⁾ F. Ramirez, S. Dershowitz, J. Org. Chem. 22 (1957) 41.
 - ²⁷⁾ W. Sucrow, B. Schubert, W. Richter, M. Slopianka, Chem. Ber. 104 (1971) 3689.
 - ²⁸⁾ G. R. Weihe, T. C. McMorris, J. Org. Chem. 43 (1978) 3942.
 - ²⁹⁾ C. F. Ingham, R. A. Massy-Westropp, G. D. Reynolds, W. D. Thorpe, Aust. J. Chem. 28 (1975) 2499.
 - ³⁰ O. Isler, H. Gutmann, M. Montavon, R. Rügg, G. Ryser, P. Zeller, Helv. Chim. Acta 40 (1957) 1242.
 - ³¹⁾ P. A. Levene, Org. Synth., Coll. Vol. II (1943) 88.
 - ³²⁾ M. Gaudry, A. Marquet, Org. Synth. 55 (1976) 24
 - ³³⁾ J. H. Bayer, D. Straw, J. Am. Chem. Soc. 74 (1952) 4506.
 - ³⁴⁾ R. M. Cowper, L. H. Davidson, Org. Synth., Coll. Vol. II (1943) 480.

[216/87]